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Abstract

A search has been performed for long-lived particles that could have come to rest
within the CMS detector, using the time intervals between LHC beam crossings. The
existence of such particles could be deduced from observation of their decays via
energy deposits in the CMS calorimeter appearing at times that are well separated
from any proton-proton collisions. Using a data set corresponding to an integrated
luminosity of 18.6 fb−1 of 8 TeV proton-proton collisions, and a search interval corre-
sponding to 281 hours of trigger livetime, 10 events are observed, with a background
prediction of 13.2+3.6

−2.5 events. Limits are presented at 95% confidence level on gluino
and top squark production, for over 13 orders of magnitude in the mean proper life-
time of the stopped particle. Assuming a cloud model of R-hadron interactions, a
gluino with mass .1000 GeV and a top squark with mass .525 GeV are excluded, for
lifetimes between 1 µs and 1000 s. These results are the most stringent constraints on
stopped particles to date.
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1 Introduction
Many extensions of the standard model (SM) predict the existence of new heavy long-lived
particles [1–6]. At the CERN LHC the two general-purpose detectors, ATLAS and CMS, have
already set stringent limits on the existence of such particles with searches that exploit the
anomalously large ionization and/or long time-of-flight that they would exhibit as they tra-
verse the detectors [7, 8]. Such searches are complemented by others using the technique
described in this paper that targets the fraction of such particles that are produced with suf-
ficiently low kinetic energy (KE) that they come to rest in the detectors [9]. In this approach,
the subsequent decay of the “stopped” particle is directly targeted, allowing (in principle) the
reconstruction of the long-lived particle and the study of its characteristics [10].

New long-lived heavy particles, such as heavy gluinos (g̃) and top squarks (̃t), could be pair-
produced in proton-proton (pp) collisions and combine with SM particles to form R-hadrons [11–
13]. These R-hadrons would then traverse the volume of the detector, interacting with detec-
tor materials via nuclear interactions and, if charged, by ionization. Below a critical velocity
.0.45c, the KE of the R-hadron is small enough and the energy loss per unit length (dE/dx)
large enough that the particle can come to rest within the body of the detector. At some later
time, the stopped R-hadron would then decay. Assuming at least one daughter particle is a
SM particle and the R-hadron has stopped in an instrumented region of the detector, the de-
cay could be observable. If this stopping location is in the calorimeter, as is most likely given
its density, the experimental signature would be a randomly-timed, relatively large energy re-
sponse spread over a few channels. Since these depositions might be difficult to differentiate
from those of SM particles produced in pp collisions, they would be most easily observed at
times between pp collisions. During these times the detector should be quiet with the excep-
tion of cosmic rays, some beam-related backgrounds, and instrumental noise. The results of
such searches have previously been reported by the D0 collaboration at the Tevatron [14], and
by the CMS [15, 16] and ATLAS collaborations [17, 18].

This paper provides an update to the CMS search for stopped particles. The new analysis
benefits from a four-fold integrated luminosity increase and uses data resulting from higher
energy pp collisions compared to the previous CMS publication [15].

2 The CMS detector and event reconstruction
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diam-
eter, providing a magnetic field of 3.8 T. Within the superconducting solenoid volume are a
silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and
a brass/scintillator hadron calorimeter (HCAL), each composed of a central (barrel) and two
forward (endcap) sections. Muons are measured in gas-ionization detectors embedded in the
steel flux-return yoke outside the solenoid; drift tubes and resistive-plate chambers (RPC) pro-
vide coverage in the barrel, while cathode strip chambers (CSC) and RPC provide coverage in
the endcaps. Extensive forward calorimetry complements the coverage provided by the bar-
rel and endcap detectors. A more detailed description of the CMS detector, together with a
definition of the coordinate system used and the relevant kinematic variables, can be found in
Ref. [19].

Because a stopped particle is by definition at rest, the energy deposits in the calorimeter that
result from its decay would not generally be oriented in towers radially towards the pp inter-
action point of CMS. Nevertheless, such depositions are sufficiently jet-like that they may be
reconstructed offline using the anti-kT clustering algorithm [20, 21] with a distance parameter
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of 0.5.

3 Data set and Monte Carlo simulation samples
The search is performed using

√
s = 8 TeV pp collision data collected between May and De-

cember 2012, corresponding to an integrated luminosity of 18.6 fb−1 and to 281 hours when the
dedicated trigger used in this analysis was active (“livetime”). The maximum instantaneous
luminosity achieved during this period was 7.5×1033 cm−2 s−1. As a control sample, this anal-
ysis uses

√
s = 7 TeV pp collision data corresponding to an integrated luminosity of 3.6 pb−1

collected at the beginning of LHC operations in 2010. The control sample includes 253 hours of
trigger livetime. Though the integrated luminosity for this period is much smaller than that in
2012, the trigger livetime is comparable because of the longer time interval between collisions
in 2010.

Simulated signal Monte Carlo (MC) events for this analysis are generated in three stages. First,
we use PYTHIA 8.1 [22] to generate pp → g̃g̃ and pp → t̃̃t events. The colored sparticles
are hadronized with the default parameters in the RHADRONS package included in PYTHIA 8.
These parameters influence technical aspects of the hadronization process, e.g. the fraction of
produced R-hadrons that contain a gluino and a valence gluon, which is set to 10%. Because of
the nature of the stopped-particle technique, these parameters do not have a significant effect
on the phenomenology. The passage of the R-hadrons through the detector is simulated with
GEANT4 [23]. A phase-space driven “cloud model” of R-hadron interactions with the material
of the CMS detector [24, 25], referred to as the “generic” model in Ref. [17], is used to simulate
the interaction of these R-hadrons with the CMS detector. In this model, which has emerged as
the standard benchmark for these searches, R-hadrons are treated as supersymmetric particles
surrounded by a cloud of loosely bound quarks or gluons. Alternative models of R-hadronic
interactions with matter could be used: for a model in which R-hadrons only dissipate energy
via the electromagnetic interaction, the stopping probability would be slightly less, and in a
“Regge” model where only one (electrically neutral) R-baryonic state is allowed [26, 27] the
stopping probability would be significantly reduced. We do not report results using these
alternative models.

The KE of these simulated R-hadrons is diminished though nuclear interactions and ionization,
and they can thus come to rest within the body of the CMS detector. If this occurs, the posi-
tion in the CMS coordinate system of the stopped R-hadron is recorded. The second stage of
the simulation generates an R-hadron, translates it to the stopping position recorded in stage
1, and causes it to decay at rest via a second GEANT4 step. The gluino decay is simulated
as g̃ → gχ̃0 and the top squark decay is simulated as t̃ → tχ̃0, where χ̃0 is the lightest neu-
tralino in both instances. The first stage allows estimation of the stopping probability εstopping,
and the second stage allows estimation of the reconstruction efficiency εreco. While any spin
correlation of the decaying gluino with its pair produced partner is lost in this approach, no
observable effects of this omission are expected [28]. The probability for the subsequent decay
of a stopped particle to occur at a time when the trigger is live is estimated with a custom third
stage pseudo-experiment MC simulation. We randomly generate decay times according to the
exponential distribution expected for a given lifetime hypothesis and compare these to the de-
livered luminosity profile and actual bunch structure of each LHC fill, and all relevant CMS
trigger rules, in order to determine an effective luminosity (Leff) for each lifetime hypothesis.
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4 Event selection
We perform the search with a dedicated trigger used to select events out-of-time with respect
to collisions. A series of offline selection criteria are then applied to exclude events likely due
to background processes. We also consider samples for which the jet energy threshold require-
ment has been increased. Since the backgrounds fall off rapidly with jet energy, this is a power-
ful technique to isolate signal. However, increasing the jet energy threshold to isolate a signal
also decreases the region of phase space available to the search. Therefore, results for a variety
of jet energy thresholds are presented. For each threshold, a counting experiment is performed
in which we compare the number of selected events to the number of predicted background
events that have passed the offline selection criteria.

The LHC beams are composed of circulating bunches of protons. At the experiments, bunch
crossings (BX) occur at intervals of 25 ns. However, not every BX contains protons. This search
looks for events in the BXs that do not contain colliding bunches of protons, i.e. they are “out-
of-time” with respect to normal collisions.

Such events are recorded using an updated version of the calorimeter trigger employed in the
earlier CMS study [15, 16] that uses the two beam position and timing monitors (BPTX) that
are positioned along the beam axis, at either end of the CMS detector close to the beams. These
BPTX are sensitive electrostatic instruments that are able to detect the passage of an LHC pro-
ton bunch. Consequently, in order to search for out-of-time events, we employ a dedicated
trigger that requires an energy deposit in the calorimeter trigger together with the condition
that neither BPTX detects a bunch in that BX. We also require that at most one BPTX produces
a signal in a window ±1 BX around the triggered event. This rejects triggers due to out of time
“satellite” bunches that occasionally accompany the colliding protons. The energy deposition
in the calorimeter of a jet from the R-hadron decay is sufficiently similar to those of jets orig-
inating directly from pp collisions that a calorimeter jet trigger can be used. At the hardware
trigger level (L1), the jet transverse energy, which is calculated assuming the jet was produced
at the nominal interaction point, is required to be greater than 32 GeV, while in the software
trigger (HLT) the jet energy is required to be greater than 50 GeV. At both L1 and HLT |ηjet| is
required to be less than 3.0. Finally, the trigger vetoes any event that is accompanied by a L1
endcap muon beam-halo trigger within a ±1 BX window.

We select events more than ±1 BX away from an in-time pp collision. Additionally, to remove
rare events in which an out-of-time pp collision somehow occurred, usually caused by residual
protons found in between proton bunches, we veto events that include reconstructed charged
track vertices consistent with a pp collision. Finally, we require that a jet is reconstructed with
an energy of at least 70 GeV. This threshold is set just above the turn-on plateau for the 50 GeV
trigger.

Halo muons are a source of background for this analysis. Halo muons are produced when
off-orbit protons in the LHC beam strike material in some limiting aperture of the LHC up-
stream of the CMS detector. The resulting collision produces a shower of particles, most of
which decay before reaching CMS. Muons are produced in these decays and, given their long
lifetimes and the fact that they undergo only electroweak interactions, they can survive long
enough to traverse the detector. When they pass through the denser regions, they can emit a
bremsstrahlung photon that strikes the calorimeter and can be reconstructed with large enough
energy to be included in the search sample. We remove these events by vetoing any event in
which there are hits recorded within the CSC forward muon chambers. The low-noise rate of
the CSC detectors allows the requirement to be set at the single-hit level, which enables the
maximal exclusion of this background.
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Muons from cosmic rays incident on the CMS detector can also mimic the signal character-
istics. Similar to the halo background, cosmic ray muons may emit a photon that strikes the
calorimeter, leaving a large energy deposit. To remove such events, we consider the distribu-
tion of reconstructed hits within the barrel muon system. Compared to the expected signal,
there are key differences with cosmic ray muons that can be exploited. It is possible that heavy
R-hadron decay products have a large enough energy to “punch through” the outer region of
the calorimeter and the first layers of the iron yoke of the solenoid, leaving energy deposits in
the muon system. This phenomenon is easily distinguished from cosmic ray muons by con-
sidering the distribution of reconstructed hits. In the case of cosmic ray muons, we expect hits
evenly distributed throughout the barrel of the muon system, whereas for signal events, we
expect the hits to be restricted to the innermost layers of the muon system. Additionally, in the
case of punch-through, the muon hits should be localized near the reconstructed jet. Unlike
signal events, hits from cosmic ray muons may also appear at an azimuthal angle (φ) opposite
to that of the reconstructed jet. Exploiting these properties, we are able to substantially reduce
the cosmic background contaminating the signal region by removing events with hits in the
outer layers of the muon system, events with hits recorded in both the top and bottom of the
muon system, and events with hits in the muon system opposite in φ to the leading jet.

The final source of background stems from instrumental noise in the calorimetry system, pri-
marily within the HCAL. Noise in the HCAL can give rise to events in which an errant spike in
energy is recorded, unrelated to any physical interaction with particles produced inside the de-
tector. These occurrences are rare, but the calorimeter response resembles the anticipated signal
and must be removed. We use a series of offline criteria that exploit the well-defined timing
and topology of these spikes to remove these events. These criteria are detailed in Ref. [16] and
are applied as in that analysis with the exception of the requirement that the leading jet has at
least 60% of its energy contained in fewer than 6 towers, which is now omitted.

5 Signal efficiency
Using the stage 1 MC simulation described in Section 3, we estimate the probability of an
R-hadron to stop within the instrumented regions of the detector. In particular, we are inter-
ested in R-hadrons that stop in the barrel region of the calorimeter, since these are the regions
where we can observe the subsequent jet-like energy deposits from the decay products. We
exclude the endcap calorimeters since the signal-to-background ratio is less favorable in this
region. R-hadrons could also stop within the iron yokes interleaved with the muon detector
system, but we expect a negligible efficiency to detect the corresponding decays. The simula-
tion demonstrates that the stopping probability is approximately constant over the range of R-
hadron masses considered in this search. The probability that at least one R-hadron is stopped
within the barrel region of the calorimeter is found to be 8% for gluinos with mg̃ = 800 GeV
and 6% for top squarks with mt̃ = 400 GeV. The slighter larger εstopping obtained for gluinos is
because of their greater propensity to form doubly charged states.

For the particles that stop and then decay within the calorimeter, we estimate an approximate
trigger efficiency of 70%. We define εreco as the number of signal events that pass all selection
criteria (including the trigger requirement) divided by the number of signal events that stop
within the barrel region of the calorimeter. The reconstruction efficiency depends principally on
the energy of the visible daughter particle of the R-hadron decay, Eg or Et. The reconstruction
efficiencies obtained for gluinos and top squarks are plotted as a function of this energy in
Fig. 1. Above the minimum energy threshold for the SM decay products, where εreco becomes
approximately constant, Eg > 120 GeV (Et > 150 GeV), we obtain εreco ≈ 45% (32%) for g̃(̃t)
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Figure 1: The reconstruction efficiency εreco for g̃ and t̃ R-hadrons that stop in the barrel region
of the calorimeter as a function of the energy of the produced SM daughter particle. The shaded
bands indicate the systematic uncertainty in εreco.

decays. The top squark efficiency is lower than the gluino efficiency primarily because of t →
bµν decays that yield less visible energy in the calorimeter and are rejected by the muon vetoes.
When Et is below mt, which can happen in cases when the mass splitting between the t̃ and χ̃0

is small, the top quark is off the mass-shell.

The signal efficiency is given by the product of εstopping and εreco.

6 Backgrounds
It is possible for halo muons to escape detection in the endcap muon system. Escaping detec-
tion is uncommon, but owing to the high rate of halo production in the 2012 data collection pe-
riod, the expected halo background is non-negligible. We estimate the halo veto inefficiency us-
ing a tag-and-probe method [29] that analyzes control samples to determine the rates at which
we record hits on both ends of the endcap muon detectors, compared to the rate at which we
see only the “incoming” or “outgoing” portions of the halo muon track. Because of timing and
trigger effects, we may only observe the outgoing leg of the halo muon, with the incoming leg
recorded in a previous BX. When the reverse occurs, we see only the incoming leg. Addition-
ally, it is possible for the muon to lose all of its energy within the CMS detector before reaching
the opposite side CSC chambers, which also results in an incoming-only event. We classify
these events as to whether the halo originates from the clockwise or counterclockwise beam,
and bin them by their geometric location in the endcap muon system. After integrating these
distributions, we measure a halo veto inefficiency of 1× 10−5. This inefficiency is multiplied
by the number of positively-identified halo events in the search sample, giving us an average
halo background estimate of 8.0± 0.4 events.
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To determine the rate at which cosmic ray muons escape detection by the cosmic muon veto,
we generate a sample of 300 million simulated cosmic events. After requiring a substantial
energy deposit in the calorimeter and the absence of any hits in the muon endcap system that
would cause the event to be classified as a halo muon, we estimate the inefficiency of the cosmic
muon veto by dividing the number of events that escape this veto by the total number of events.
The inefficiency obtained in this manner is roughly 0.5%, corresponding to a predicted cosmic
background of 5.2± 2.5 events.

Finally, the background owing to instrumental noise is estimated by considering data recorded
in 2010. Figure 2 shows the measured noise rates in both periods. In these plots all selection
criteria except those that are designed to reject noise are applied. Additionally, only events
at least 5 BX from a bunch are considered. This is done to reduce halo contamination in the
distributions, which is abundant directly after a bunch crossing. There is a greater variation
in the 2012 noise rate because of increased halo background, which can mimic HCAL noise if
no CSC hits are present. The small variation seen in the 2012 data, while larger than that seen
in 2010, is nevertheless small compared to the systematic uncertainty in the noise event count.
The larger variations observed in the 2012 data are attributed to residual halo contamination
arising from non-standard LHC beam conditions.

Because the rate of instrumental noise is approximately constant between the two periods, and
the data recorded in early 2010 were delivered with very low instantaneous luminosity, this
sample is unlikely to contain either halo events or signal events. After applying the same se-
lection criteria to the 2010 data sample as used in this analysis, two events remain. We estimate
the cosmic ray muon contribution to this sample to be 4.8 ± 3.6 events. Because the cosmic
ray background estimate exceeds the number of observed events, we assume a central value of
zero events for the instrumental noise contribution to the 2010 sample, and allowing for Pois-
son fluctuations in both the noise and cosmic ray muon contributions, set a 68% confidence
level (CL) upper limit on this contribution of 2.3 events. This estimate is then scaled by the ra-
tio of the 2012 and 2010 livetimes, resulting in an expected noise contribution of 0.0+2.6

−0.0 events
in the 2012 data set.

7 Sources of systematic uncertainties
The model-independent results of the counting experiment described in this paper have rel-
atively few systematic uncertainties. There is a 2.5% uncertainty in the integrated luminos-
ity [30]. There is a 13% uncertainty in the reconstruction efficiency resulting from the possibil-
ity that even above the minimum value of Eg (Et), this efficiency is not completely independent
of the energy of the daughter particle as is assumed. This uncertainty is determined by con-
sidering the difference between the individual values of εreco in Fig. 1 and the average value
for all points above the minimum value of Eg (Et). The shaded bands in the figure depict this
uncertainty. Because the energy deposits resulting in reconstructed jets are not the result of jets
originating from the center of the detector (as is the case for jets originating from pp collisions),
they are not necessarily directed radially, and standard uncertainties in the jet energy scale (JES)
do not apply. Instead, we determine the JES uncertainty by referencing a study performed on
the HCAL during cosmic ray data taking in 2008 [31]. This study compares the reconstructed
energy deposits in the HCAL for simulated cosmic ray events and cosmic ray events in 2008
data. These comparisons lead to an estimated uncertainty of ∼2% on the simulation. A similar
study comparing data and simulation for dijets originating at the interaction point conducted
with 2012 data yielded an uncertainty of <2% for jets striking the HCAL barrel with angles
of incidence from 0 to 60 degrees [32]. While the study demonstrates that the HCAL response



7

1134 1225 1251 1262 1283 1299

In
st

ru
m

en
ta

l n
oi

se
 r

at
e 

[H
z]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

CMS 2010

2692 2870 2929 3033 3200 3279

In
st

ru
m

en
ta

l n
oi

se
 r

at
e 

[H
z]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

CMS 2012

Figure 2: The noise rates from 2010 data (top) and 2012 data (bottom).

is well simulated with an uncertainty of about 1%, we take a conservative JES uncertainty of
3% to compensate for any effects of stopped particle decays that these studies cannot test be-
cause of the potentially large angles that could sometimes be expected in the signal decays.
This value for the JES uncertainty leads to an uncertainty in the search results of about 2% at
the minimum value of Eg. The value of 3% is somewhat pessimistic since the uncertainty falls
rapidly as Eg increases. Variations in the reconstructed jet energy are only important for de-
posits with energies close to the jet energy threshold, which typically correspond to events in
which Eg is small.

In obtaining constraints on a particular model, however, more substantial uncertainties arise
since the signal yield is sensitive to the stopping probability. While the GEANT4 simulation
used to derive the stopping probability very accurately models both the electromagnetic and
nuclear interaction energy-loss mechanisms, the relative contributions of these energy-loss
mechanisms to the stopping probability depends significantly on unknown R-hadron spec-
troscopy. We do not consider this dependence to be a source of error, however, since given a
particular model for the spectrum the resultant uncertainty in the stopping probability is small.

In addition to these uncertainties in the signal efficiency, there is also a systematic uncertainty
in the background estimate described in Section 6. This systematic uncertainty arises from the
limited size of the data control samples that were used to estimate the contribution of each of
the background processes to the search sample.

The systematic uncertainties are summarized in Table 1.
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Table 1: Summary of systematic uncertainties.

Systematic uncertainty Fractional uncertainty
JES uncertainty ±3%
Luminosity uncertainty ±2.5%
εreco uncertainty ±13%
Background uncertainty +27%, −19%

8 Results
The total and individual background estimates for both the 2012 search period and the 2010
control period used to determine the background from instrumental noise, are summarized in
Table 2, together with the number of observed events.

Table 2: Background predictions and observed events for the 2010 control and 2012 search
samples.

Period Trigger livetime (h) Nbkg
noise Nbkg

cosmic Nbkg
halo Nbkg

total Nobs

2010 253 0.0+2.3
−0.0 4.8± 3.6 — 4.8+4.3

−3.6 2

2012 281 0.0+2.6
−0.0 5.2± 2.5 8.0± 0.4 13.2+3.6

−2.5 10

With the assumption that the backgrounds listed in Table 2 are uniformly distributed in time,
which is valid even for the halo background for times at least one BX away from the collision as
our selection requires, we perform a counting experiment in equally spaced log(time) bins of
gluino (top squark) lifetime hypotheses, τg̃(τ̃t), from 10−7 to 106 seconds. For lifetime hypothe-
ses shorter than one orbit (89 µs), we count only candidates within a sensitivity-optimized time
window of 1.3τg̃(τ̃t) from any pp collision. This restriction avoids the addition of backgrounds
for time intervals during which the signal has a high probability to have already decayed. In
order to resolve any time structure in the data within a single orbit, we test two additional life-
time hypotheses for each observed event for these counting experiments: the largest lifetime
hypothesis for which the event lies outside 1.3τg̃(τ̃t), and the smallest lifetime hypothesis for
which the event is contained within 1.3τg̃(τ̃t). Table 3 shows the results of the counting exper-
iments for selected lifetime hypotheses. The observed number of events is consistent with the
background expectation for all lifetime hypotheses tested.

Table 3: Results of counting experiments for selected lifetime hypotheses.

Lifetime hypothesis Leff (fb−1) Trigger livetime (s) Expected bkg. Observed

50 ns 0.121 5.0× 104 0.66+0.18
−0.07 0

75 ns 0.271 1.0× 105 1.3+0.4
−0.2 3

100 ns 0.512 2.0× 105 2.6+0.7
−0.5 3

1 µs 2.864 8.4× 105 11.0+3.0
−2.1 6

10 µs 3.885 1.0× 106 13.1+3.6
−2.4 10

100 µs 3.972 1.0× 106 13.2+3.6
−2.5 10

103 s 3.868 1.0× 106 13.2+3.6
−2.5 10

104 s 3.004 1.0× 106 13.2+3.6
−2.5 10

105 s 1.727 1.0× 106 13.2+3.6
−2.5 10

106 s 1.181 1.0× 106 13.2+3.6
−2.5 10
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8.1 Limits on gluino and top squark production

We obtain upper limits on the signal production cross section using a hybrid CLS method [33,
34] to incorporate the systematic uncertainties [35]. These limits are presented in Fig. 3 as a
function of particle lifetime τ. The two left-hand axes of Fig. 3 are production cross section
times branching fraction (σ×B) for top squarks and gluinos, assuming the total energy of the
SM particle in the decay satisfies either Eg > 120 GeV or Et > 150 GeV for the gluino and top
squark analyses, respectively. The minimum energy of the SM particle is set by considering the
reconstruction efficiency shown in Fig. 1. Below this energy, the reconstruction efficiency drops
off rapidly and we are significantly less sensitive to g̃ and t̃ decays. By not making a specific
neutralino mass hypothesis, we are able to constrain a larger phase space of top squark decays,
including the region where the top squarks are off mass-shell. The right-hand axis of Fig. 3
shows the quantity σ×B × εstopping × εreco, which is more model independent.
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Figure 3: The left-hand axes present expected and observed 95% CL upper limits on top squark
and gluino pair production cross sections using the cloud model of R-hadron interactions, as
a function of particle lifetime. The NLO+NLL cross sections shown were obtained with NLL-
FAST [36]. The right-hand axis shows the quantity σ×B× εstopping× εreco, which is more model
independent. The structure observed between 10−7 and 10−5 s is due to the number of observed
events incrementing when crossing boundaries between lifetime bins. When Et < mt, the top
quark is off the mass shell.

8.2 Limits on gluino and top squark mass

Figure 4 shows the limits on gluino and top squark mass as a function of the particle lifetime.
The production cross sections at

√
s = 8 TeV were obtained at next-to-leading order in αs with

next-to-leading-logarithmic soft gluon summation (NLO+NLL) using NLL-FAST [36], with the
assumption that any other sparticles are decoupled. Assuming B(g̃ → gχ̃0) = 100% and
B(̃t → tχ̃0) = 100%, we are able to exclude mg̃ < 880 GeV and mt̃ < 470 GeV at 95% CL for
1 µs < τ < 1000 s with Eg > 120 GeV and Et > 150 GeV. Because of the requirements on
the minimum energies for the gluon (top quark), these limits do not apply for all neutralino
masses, as discussed in the next section.
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lifetime, assuming the cloud model of R-hadron interactions and NLO+NLL production cross
sections given in Ref. [37]. When Et < mt, the top quark is allowed to go off the mass shell.

8.3 Results for higher energy thresholds

With the selection criteria described previously, we are able to reduce background contami-
nation to acceptable levels. We can, however, be more aggressive with the removal of back-
grounds by increasing the jet energy threshold. Since εreco is essentially flat above the mini-
mum energy of Eg or Et, and the background falls steeply with energy, we potentially obtain
stronger limits on the production cross section by running the analysis with an increased jet
energy threshold. This more aggressive method of reducing background was performed for
thresholds of 100, 150, 200, and 300 GeV. However, as the jet energy threshold increases, the
sensitivity to heavy χ̃0 degrades. If there is a smaller mass splitting between g̃(̃t) and χ̃0, the
amount of energy available for the visible decay product is small.

To perform the analysis at the higher jet energy thresholds, the threshold is first applied to the
simulated signal to calculate the minimum energy of Eg or Et and εreco for each threshold. Next,
we repeat the analysis of the 2010 data to estimate the instrumental noise rate at the increased
threshold, and then the cosmic and beam halo rates are determined as for the main analysis
with the 70 GeV jet energy threshold. The resultant contributions of each background source
to each signal region are presented in Table 4. Limits on gluino and squark masses for each
threshold are presented in Table 5. These limits are valid for the minimum value of Eg and Et
that we calculate from the turn-on curves shown in Fig. 5. These minimum values are listed
in Table 5 for each threshold; they increase with the increased jet energy threshold because the
turn on plateau for εreco moves in response to the higher thresholds as seen in Fig. 5.

The systematic uncertainties in εreco and integrated luminosity are unaffected by the increase
in the jet energy threshold. However, the systematic uncertainty resulting from the JES does
vary somewhat with different thresholds. The final JES uncertainty is calculated by measuring
the change in εreco when the jet energy threshold requirement is varied according to the JES



11

systematic uncertainty. Variations in the jet energy requirement have the largest impact for
gluon (top) energies close to the threshold, so we perform this calculation on simulated signal
samples corresponding to the minimum values of Eg (Et).

As mentioned previously, increasing the jet energy threshold affects the masses of χ̃0 that are
accessible to the analysis. Figure 6 summarizes how these different jet energy thresholds ex-
clude different regions of the (mg̃, mχ̃0) phase space. Figure 7 does the same for the (mt̃, mχ̃0)
phase space, though it only applies to on-shell top quark decays because mχ̃0 is unknown when
the top goes off mass-shell. It should be noted that the minimum lifetime for the higher thresh-
old limits increases from 1 µs to 10 µs. This decrease in sensitivity to smaller lifetimes is due to
the smaller sample size associated with the increased energy requirement.

Table 4: Background estimates for various energy thresholds.

Thresh. (GeV) Nbkg
noise Nbkg

cosmic Nbkg
halo Nbkg

total

70 0.0+2.6
−0.0 5.2± 2.5 8.0± 0.4 13.2+3.6

−2.5

100 0.0+2.0
−0.0 3.1± 1.2 1.7± 0.4 4.9+2.4

−1.2

150 0.0+2.2
−0.0 1.6± 1.0 0.6± 0.1 2.1+2.4

−1.0

200 0.0+1.3
−0.0 0.5± 0.4 0.5± 0.1 0.7+1.4

−0.4

300 0.0+1.3
−0.0 0.4± 0.4 0.04± 0.02 0.4+1.3

−0.4

Table 5: Lower limits on gluino and top squark masses obtained from the analyses with varied
jet energy thresholds.

Threshold (GeV) Nbkg Nobs Emin
g (GeV) mg̃ limit (GeV) Emin

t (GeV) mt̃ limit (GeV)

70 13.2+3.6
−2.5 10 120 880 150 470

100 4.9+2.4
−1.2 1 150 990 200 530

150 2.1+2.4
−1.0 0 220 1010 300 550

200 0.7+1.4
−0.4 0 320 1020 360 550

300 0.4+1.3
−0.4 0 430 1020 470 550

9 Summary
A search has been made for long-lived particles that have stopped in the CMS detector af-
ter being produced in 8 TeV pp collisions at the CERN LHC. The subsequent decay of these
particles was looked for during gaps between proton bunches in the LHC beams. In a data
set with a peak instantaneous luminosity of 7.5× 1033 cm−2 s−1, an integrated luminosity of
18.6 fb−1, and a search interval corresponding to 281 hours of trigger livetime, no excess above
background is observed. Limits are presented at 95% CL on gluino and top squark production
over 13 orders of magnitude in the mean proper lifetime of the stopped particle. Assuming a
cloud model of R-hadron interactions, for Eg > 120 GeV, and B(g̃ → gχ̃0) = 100%, gluinos
with lifetimes from 1 µs to 1000 s and mg̃ < 880 GeV are excluded. Under similar assumptions,
Et > 150 GeV, and B(̃t→ tχ̃0) = 100%, long-lived top squarks with lifetimes from 1 µs to 1000 s
and mt̃ < 470 GeV are excluded. By increasing the jet energy requirement, these mass exclu-
sions increase to mg̃ . 1000 GeV and mt̃ . 525 GeV in a more restricted region of parameter
space. In all cases, these exclusions require that mχ̃0 is kinematically consistent with the mini-
mum values of Eg and Et. These results are the most stringent constraints on stopped particles
to date.
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Figure 5: The reconstruction efficiency εreco for g̃ and t̃ R-hadrons that stopped in the barrel
region of the calorimeter as a function of the energy of the SM daughter particle for jet energy
thresholds of 100, 150, 200, and 300 GeV.
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[22] T. Sjöstrand, S. Mrenna, and P. Z. Skands, “A brief introduction to PYTHIA 8.1”, Comput.
Phys. Commun. 178 (2008) 852, doi:10.1016/j.cpc.2008.01.036,
arXiv:0710.3820.

[23] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, Nucl. Instrum. Meth. A 506
(2003) 250, doi:10.1016/S0168-9002(03)01368-8.

[24] A. C. Kraan, “Interactions of heavy stable hadronizing particles”, Eur. Phys. J. C 37
(2004) 91, doi:10.1140/epjc/s2004-01997-7, arXiv:hep-ex/0404001.

[25] R. Mackeprang and A. Rizzi, “Interactions of coloured heavy stable particles in matter”,
Eur. Phys. J. C 50 (2007) 353, doi:10.1140/epjc/s10052-007-0252-4,
arXiv:hep-ph/0612161.

[26] R. Mackeprang and D. Milstead, “An updated description of heavy-hadron interactions
in GEANT4”, Eur. Phys. J C 66 (2010) 493,
doi:10.1140/epjc/s10052-010-1262-1, arXiv:0908.1868.

[27] F. Buccella, G. R. Farrar, and A. Pugliese, “R-Baryon masses”, Phys. Lett. B 153 (1985)
311, doi:10.1016/0370-2693(85)90555-6.

http://dx.doi.org/10.1016/0370-2693(78)90858-4
http://dx.doi.org/10.1103/PhysRevLett.99.131801
http://www.arXiv.org/abs/0705.0306
http://www.arXiv.org/abs/0705.0306
http://dx.doi.org/10.1007/JHEP08(2012)026
http://www.arXiv.org/abs/1207.0106
http://www.arXiv.org/abs/1207.0106
http://dx.doi.org/10.1103/PhysRevLett.106.011801
http://www.arXiv.org/abs/1011.5861
http://www.arXiv.org/abs/1011.5861
http://dx.doi.org/10.1140/epjc/s10052-012-1965-6
http://www.arXiv.org/abs/1201.5595
http://dx.doi.org/10.1103/PhysRevD.88.112003
http://www.arXiv.org/abs/1310.6584
http://dx.doi.org/10.1088/1748-0221/3/08/S08004
http://dx.doi.org/10.1088/1126-6708/2008/04/063
http://www.arXiv.org/abs/0802.1189
http://dx.doi.org/10.1140/epjc/s10052-012-1896-2
http://www.arXiv.org/abs/1111.6097
http://dx.doi.org/10.1016/j.cpc.2008.01.036
http://www.arXiv.org/abs/0710.3820
http://www.arXiv.org/abs/0710.3820
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1140/epjc/s2004-01997-7
http://www.arXiv.org/abs/hep-ex/0404001
http://dx.doi.org/10.1140/epjc/s10052-007-0252-4
http://www.arXiv.org/abs/hep-ph/0612161
http://www.arXiv.org/abs/hep-ph/0612161
http://dx.doi.org/10.1140/epjc/s10052-010-1262-1
http://www.arXiv.org/abs/0908.1868
http://dx.doi.org/10.1016/0370-2693(85)90555-6


16 References
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Université de Mons, Mons, Belgium
N. Beliy, T. Caebergs, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
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S. Spannagel, A.D.R. Vargas Trevino, R. Walsh, C. Wissing

University of Hamburg, Hamburg, Germany
V. Blobel, M. Centis Vignali, A.R. Draeger, J. Erfle, E. Garutti, K. Goebel, M. Görner, J. Haller,
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M. Gabusia ,b, S.P. Rattia,b, V. Rea, C. Riccardia ,b, P. Salvinia, P. Vituloa ,b

INFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy
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INFN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy
K. Androsova,25, P. Azzurria, G. Bagliesia, J. Bernardinia, T. Boccalia, G. Broccoloa,c, R. Castaldia,
M.A. Cioccia ,25, R. Dell’Orsoa, S. Donatoa ,c,2, F. Fioria ,c, L. Foàa ,c, A. Giassia, M.T. Grippoa ,25,
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K. Romanowska-Rybinska, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki,
J. Krolikowski, M. Misiura, M. Olszewski
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